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The stability of the steady motions and the controllability of a class of non-holonomic mechanical systems under the action of 
potential and control forces are investigated. A problem of the stability of the steady motion of a three-wheeled vehicle, taking 
into account the inertia of the wheels, which is an example of systems of this class, is considered. © 2005 Elsevier Ltd. All rights 
reserved. 

1. S T E A D Y  M O T I O N S  

Consider a non-holonomic mechanical system, the position of which is defined by the generalized 
coordinates qt . . . . .  qn. We shall assume that is possesses certain characteristics. In fact, its generalized 
coordinates can be chosen so that the following conditions are satisfied. 

The velocities ql, . . . ,  0n are restricted by n - l(l < n) steady non-holonomic constraints which can 
be represented in the form of the two groups 

l 

4)~ : E bxr(q)Or (1.1) 
r=l 

l 

Op = E bpr(q)qr (1.2) 
r = l  

Hereforth, the subscripts take the values 

p , r , s =  l . . . . .  1;)~=/+1 . . . . .  m; p =  m + l ,  . . . , n ;  g = l  +l . . . . .  n. 

Elimination of the quantities 0~, @ using the equations of the constraints (1.1) and (1.2) from the 
expressions for T and OT/~Og (T is the kinetic energy of the system) leads to the expressions 

l l 

2 0  = ~ ars(q)orO s > O, O~ = ~ Ogp(q)g]p (1.3) 
r , s =  1 p =  I 

Also, suppose the following conditions arc satisfied: 
(1) the coefficients bzr in Eqs (1.1) are functions solely of the coordinates ql+l . . . .  , qm, the velocities 
of which are dependent by virtue of the same Eqs (1.1), while the coefficients b0r in Eqs (1.2) may depend 
on the coordinates qt . . . . .  qt, ql+l, . . .  , qm; 
(2) the potential forces acting on the system are the derivatives of a force function U(q) which also 
depends on the coordinates qx, that is, U = U(qz); 
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(3) the coefficients ar~ in expression (1.3) and the expression 

where 

i~gpVgrs  

g = l + l  

Obg r Ob~t s ~ f Obos Ob, r'~ 
= 

Vgrs Oqs ~ rc 

depend solely on the coordinates ql+l, . . .  , qm" 
In the case of a non-holonomic mechanical system belonging to the class under consideration, the 

equations of motion in the form of Voronets equations [1, 2] have the form 

m n 1 m 

d ~0 O(O + U) b "r "b 
Zt~-~ = Z Oq x x Z Z O~tpV,rsOsOe + Q~ + Z Q~bx~ 

) ~ = l + l  I.t=l+ lp, s= l Z = I + I  

(1.4) 

where Q r ,  Qz are control forces, which we shall assume to depend solely on the variables Or, qx. 
A specific characteristic of systems of this class is the fact that, when there are no controls 

(Q~ = 0, Qx = 0), all the coordinates qr are cyclic in the sense of the definition in [2-4] and the coordinates 
qx (Z = l + 1 . . . .  , m) are positional. 

It should be emphasized that, unlike in the general case, Eqs (1.4), together with the equations of 
the constraints (1.1), form a closed system of first order equations in c), qx and do not contain the 
coordinates qr explicitly. The equations for the non-holonomic constraints (1.2) are equation for 
constraints of the Chaplygin type. 

We shall assume that, for certain initial conditions and Qr = 0, Qx = 0, steady motion of the system 
is possible, during which the positional coordinates and the cyclic velocities are constant: 

qr(t) = OrO = O)r qz(t) = qxo (1.5) 

In this case, the m constant quantities Or, qx0 satisfy the m equations 

l n m,~ 1 Oaps] V ~b ~U~ = 0 
Z Z OgPVI-trs + Z 2bxr O)pO~s + z_~ | Zr~,~ [ 

p , s = l  t.t = 1+ I Z = I + I  ~ ) 0  Z = I + I (  " / Z J  0 

(1.6) 

l 

Z (b~r)O('Or = 0 
r = l  

(1.7) 

A zero subscript denotes that an expression is calculated for the values of the variables corresponding 
to the steady motion (1.5). 

Depending on the parameters of system (1.6), (1.7), there can be one or several isolated solutions. 
Cases are possible when only m - m' independent equations can be found among Eqs (1.6) and (1.7) 
and the system being considered will then have a set of steady motions of the form (1.5) of dimensionality 
m t" 

Note that, when the conditions for the existence of steady motions, which were formulated earlier 
for the general case in [2-4], are satisfied, Eqs (1,6) and (1.7) are satisfied identically with respect to 
0)r, qz0, that is, an m-dimensional manifold of steady motions exists. 

2. INVESTIGATION OF THE STABILITY 

We choose an arbitrary point 0)r, qz0, defined by relations (1.6) and (1.7), and consider the question of 
the stability of solution (1.5) of the system of equations (1.1), (1.4) with respect to perturbations of the 
variables 0r, qz" 

We introduce the deviations 
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Yr = qr-°~r, zz = qx -qzo  

The equations of the perturbed motion in the variables 

y = ]]yl...yl[] r, Z ~--" IIZ/+ l...Zm]] r 
(/X 1) ( ( m - l )  x 1) 

have the form 

A f = PlY + VlZ + F~l)u~l) + P~ F~e)uC2) + Y(Y, z), ;~ = PzY + Vzz + Z(y, z) (2.1) 

The elements of the matrices A, P and V are calculated in a similar manner to that indicated earlier in 
[2]; Y(y, z, u (1), u (2), Z(y,  z) are vector functions which contain terms of higher than the first order in 
the variables y, z which have been introduced and F0)u 0), F(Z)u (2) are the linear parts of the control 
functions. (1 × 1) ((m - l) x 1) 

Unlike the equations of the perturbed motion of a non-holonomic system of general form, which 
has been considered earlier in [4-7], the system of equations (2.1) is a first-order system and does not 
contain a block of equations corresponding to the positional coordinates. For this reason, the problem 
of the stability of the steady motion of a non-holonomic mechanical system of this class cannot be reduced 
to a problem on the stability of the equilibrium position of a certain holonomic system, and the theorems 
proved in [2-7] cannot be applied to it. This fact also actually justifies the advisability of separating out 
the special of non-holonomic systems introduced above. 

The characteristic equation of the linearized homogeneous systems (2.1) has the form 

If a non-holonomic mechanical system possesses a manifold of steady motions of dimensionality m', 
then the condition rankG(0) _< m - m '  is satisfied. If rankG(0) = m -m ' ,  then the characteristic equation 
(2.2) has m' zero roots, which corresponds to the Lyapunov critical case, and the Lyapunov-Malkin 
theorem [8, 9] can be used to investigate the stability of the steady motion. 

The following assertion can therefore be formulated in the case of systems belonging to the class 
being considered when there are no controls. 

Theorem 1. If the non-holonomic system (1.1), (1.4), when conditions 1-3 of section 1 are satisfied, 
has a manifold of steady motions defined by relation (1.6) and (1.7), then the steady motion (1.5) is 
stable (unstable) if all of the roots of Eqs (2.2), apart from the m' zero roots, have negative real parts 
(at least one root with a positive real part). In the case of stability, every perturbed motion, which is 
sufficiently close to the unperturbed motion, tends, when t ~ oo, to one of the possible steady motions 
belonging to the above-mentioned manifold, defined by relations (1.6) and (1.7). 

If the additional conditions [2-4] are satisfied, the matrices P1, Pz, Vt, Vz are null matrices and the 
number of zero roots of the characteristic equation (2.2) is equal to m. In this case, it is necessary to 
consider the complete non-linear system when analysing the stability. 

3. C O N T R O L L A B I L I T Y  

The criteria for controllability and observability were formulated earlier in [5] for non-holonomic 
mechanical systems of general form. Using the criterion in [10], it is easy to obtain the criteria of 
controllability for non-holonomic systems of the class being considered. 

Theorem 2. System (2.1) is controllable when and only when 

rankG 1 = m, VKe A, A = {;Li: detG(~,) = 0} 

when 

Gl G(~,) F , F = P2 F 
0 0 

(3.1) 
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Corollary. 1. If the control act solely on all of the cyclic coordinates (F (1) = El, (F (2) = 0)), then system 
(2.1) is controllable when and only when rankHP 2 LE - v211 = m - l, v~ ~ A. 
2. If the controls are only introduced via all the positional coordinates (F 0) = 0, F (2) =Em _ 1) and the 
system has a manifold of steady motions of dimensionality m',  then, for system (2.1) to be controllable, 
it is necessary that the dimensionality of the manifold of steady motions should not exceed the number 
of positional coordinates (m - l). 

The last assertion shows that, i fm'  > m - l, then, in order to stabilize the steady motion, it is necessary 
to introduce controls not only through the positional coordinates but just through some of the cyclic 
coordinates. 

The criteria of observability for the systems being considered, when there is information of one form 
or another, can be obtained in a similar manner. 

4. T H E  STEADY M O T I O N S  OF A T H R E E - W H E E L E D  V E H I C L E  

We will consider a model of a three-wheeled vehicle (a tricycle) as a system of rigid bodies: a trolley 
of mass m> the body of this trolley is rigidly coupled to an axle onto which two wheels of radius r are 
fitted with masses ml and m2 (with centres at the points M1 and M2), a vertical strut of mass mc (with 
centre at the point Me), coupled to the trolley by a vertical hinge at the pointA, a rigid axle is fastened 
at point D of the strut and this axle is fitted with a wheel of radius R and mass m 3 (with centre at the 
point M3). 

The wheels roll over a rough horizontal plane without sliding and without leaving the surface. We 
neglect the displacement of the centre of mass of the system which arises when the leading part of the 
tricycle is rotated [11]. 

We introduce a fixed system of coordinates O ~ .  The body and the strut execute plane-parallel motion 
in the horizontal plane O~T1. We denote the projections of the centres of mass of the strut, the trolley 
and the third wheel onto the plane O~rl by C, G and D and define the position of the system by means 
of the coordinates ~, rl, 0, O, %, q~2, % (see Fig. 1): ~ and rl are the coordinates of point B, the middle 
of the rear bridge in the system of coordinates O~rl, ~ is the angle between the axis of symmetry of the 
trolleyAB and the fixed axis O~, and 0 is the angle of rotation of the strut about the axis of the trolley 
AB; here 01 = 0 + O, where 01 is the angle of rotation of the strut about the fixed axis O~, and %, (P2, 
q~3 are the angles of rotation of the wheels around the corresponding axes. 

We introduce the following notation 

a = M1B = M2B, l i = BG, l 2 = GA, l = 11 + l 2 = AB, d = AC, b = AD 
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The conditions that there is no slip of the wheels in this problem means that there are no components 
of the velocities of the points of contact of the wheels with the plane of rolling in the transverse and 
longitudinal directions. 

In the notation adopted, these conditions (the conditions of non-holonomic constraints) take the form 

~ c o s O + r l s i n O - a O - r %  = O, ~s inO- / IcosO = 0 

~cosO + ~lsinO + a O -  r(pz = 0 

~COSI~ 1 + ~lsinO l + / O s i n 0 -  R~0 3 = 0 

-'~sinOl + flcosO1 +/Ocos0 + bl~l = 0 

(4.1) 

We introduce new generalized coordinates, which also uniquely define the position of the mechanical 
system 

ql = ~1 + ~2, q2 = O, q3 = 0, q4 = ~, qs = q ,  q6 = ~3, q7 = ~ l - ~ 2  (4.2) 

The equations of non-holonomic constraints (4.1) take a simpler form in the variables (4.2), where 
one constraints is a non-holonomic constraint of the general form of (1.1) 

(13 = b31gll + b3z(12 (4.3) 

and the remaining constraints of (1.2) are constraints of the Chaplygin type 

(14 = b41ql,  q5 = bsl(11, (16 = b61(11 + b62(12, (17 = b71(12 (4.4) 

Here 

r ) 
b31(q3) = ~smq3, b32(q3) = - l + ~ c o s q 3 ,  b41(q2) = rcosq2 

r 1 . 2a 
b51(q2) = rsinq2' b61(q3) = R cOsq3' b62(q3) = R smq3' b72 r 

(4.5) 

The coefficients b31 and b32, being solely functions of the coordinate q3, satisfy condition 1 of 
Section 1. 

The expression for the kinetic energy of the system ignoring constraints (4.3) and (4.4) has the form 

7 
1 . . 

T = ~ Z A i j q i q j  
i , j  

Here 

1 1 
All = A77 = J,  AI7 = ~J4, A22 = I+I4+2S31c°sq3,  A23 = ~(14+S31c°sq3) 

1 . 
A24 = ~ ( -  SI smq2 + S2c°sq2 - S3sin(q2 + q3)) 

1 
A2s = ,~(Slc°sq2 + Szsinq2 + S3cos(q2 + q3)) 

1 . 1 
A33 = 14, A34 = -~S3sln(q2 + q3), A35 = ~S3c°s(q2 + q3) 

A44 = A55 = M, A66 = J3 
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The remaining coefficients Aij  are equal to zero. Here 

1 1 
J = ~(J1 + J2), J4 = ~(J1 - Jz), M = m r + m c + m I + m 2 + m 3 

S l = m T l l + ( m c + m 3 ) l ,  S 2 = ( m 2 - m l ) a ,  S 3 = m c d + m 3 b  

I = mTl  ~ + ( m  l + m z ) a  2+(m c + m 3 ) l  2 + I  1 + 1 2 + J a  

14 = m c  d 2 + m 3  b 2 +  JC +13 

J j ( j  = 1, 2, 3) and I i( i  = 1, 2) are the moments of inertia of the wheels about their axes of rotation and 
diameters, respectively, and Jc  and J c  are the moments of inertia of the trolley and the strut about the 
vertical axes passing through their centres of mass. 

Eliminating the quantities 03, . . . ,  07 from the expression for the kinetic energy T using the equations 
of the constraints (4.3), (4.4), we obtain an expression for the reduced kinetic energy 

1 .2 .2 
6) = ~2[allql + 2a1201q2 + a22q2] 

Here 

2 2 
0 1 2 2 2 - -  r 2 r . 2 

a l l  = a l l  + allCOS q3 + a l l  sin q3 = Mr2 + J + _-"5J3 cOs q3 + _~15 sm q3 
R- b- 

0 l . 2 a j  + 
a l z  = a12 + a12smq3cosq3 = S2r + -  7 4 r l~ts inq3c°sq3 

0 1 2 2 . 2 V d ' l -  l 2 , 2 12 , . 2 
a22 = a22+a22 c°s q3+a22 sin q3 = I + 4 a 2 "  ~-~15c°s q3 + m  Rza3 sm q3 

J3 It 
15 = I 4 - 2 b S 3 ,  ~ - R 2 b 2 5 

The coefficients an ,  a22 and a33 depend solely on the coordinate q3 (the angle 0) 
In this case, the three-subscript symbols Vzrs (2 = 3 . . . . .  7; r = 1, 2; s = 1, 2) have the form 

r 2 
V311 = 0, V312 = -v321 = -~-~(b cosq3+l )  

V412 = -V421 = -rsinq2, V712 = V721 = 0 

T . 

V512 = --V521 = rcosq2,  V612 = -V621 = ~Sli lq3 

7 
It can be shown that the expression z~3@zpVz~ also depends solely on the coordinate q3, that is, it satisfies 
condition 3 of Section 1. = 

Hence, the mechanical model describing the motion of the tricycle is an example of a non-holonomic 
systems, which belongs to the class distinguished above. 

The equations of motion of the tricycle in the form of the Voronets equations (1.5) have the form 

6 

d ( a l l q l + a l 2 q 2 )  = 02(~101 + ~ 2 0 2 ) + b 3 1 ~ + Q l + b 3 ' Q 3 +  E b i l Q i  
3 i=4 

019 + Q2 +b32Q3 + E bnQi  d ( a l 2 0 1  + a22q2) = -01(~1(]1 + ~2q2) + b32Oq--~3 
i=6,7 

(4.6) 
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Here 

~l = [~l(q3) = r smq3 ~tcosq3 

= ( l r j  ) lrcosq3[gtcosq3_~T] ~2 = []2(q3) ~ ' ~  3 + S 1  r + 

3 0  I - 1 , , 2 . 2  2 2 . . . q 
~q3-- = .L t t ql - r q2)sm2q3 + I rq lq2cos2q3J ,  ~[ = 14 - bS  3 

where Qi (rt = 1, ... , 7) are the control functions. 
The coordinates ql = ~Pl + (P2 (the sum of the angles of rotation of the wheels) and q2 = 0 (the angle 

of the track) are cyclic [2, 3], and the coordinate q3 = 0 is positional. 
It should be emphasized that, in this problem, the introduction of generalized coordinates using 

formulae (4.2) enabled us to obtain the equations of motion of the non-holonomic system in a fairly 
simple form. The equations of motion (4.6) and the equation of the constraint (4.3) form a closed system 
of first-order equations in the variables ql, q2, q3 and do not explicitly contain the coordinates ql and 
q2; the remaining variables are found from the equations of the constraints (4.4). It is obvious that the 
analysis of the steady motions of the system, the analysis of their stability and, also, the controllability 
and observability of the system are simplified using this approach. 

The system of equations (4.6), (4.3), with certain initial conditions and when there are no controls, 
admits of the particular solution 

q i ( t )  = tll0 = ~ ;  t l2( t )  = q20 = ~ ;  q 3 ( t )  = q30 = 00 (4.7) 

which describes the steady motions of the system 
The parameters defining the steady motions of the system, satisfy the conditions 

(~o~  + ~ ° ~ ) f 2  + rb - ' K os inO  o = 0 

o o 
- ( ~1 f.0 + ~2~~) f.0 - ( 1 + lb-1 cos 00) K o = 0 (4.8) 

rb- l tos in0o-  (1 + lb- lcos00)~ = 0 

A zero subscript denotes that the expression is calculated for the steady values (4.7) and K0 = (OO/Oq3)0. 
Assuming that 1 + lb-lcos00 ~ 0 (for example, I < b), conditions (4.8) can be reduced to two 

independent relations 

f2 = rsin0° 
b + lcos0o °)' ~°)2sin20° = 0 (4.9) 

where 

= m r l l b + m c l ( b - d  ) 

Relations (4.9) define one-parameter families of steady motions of the tricycle. These steady motions 
are the following: 

(1) sin0 o = 0, f~ = 0, o) ~ 0 is an arbitrary quantity (4.10) 

The steady motion is a rectilinear motion of the tricycle at an arbitrary speed. The direction of the motion 
is determined by the sign of co. If 00 = 0, then the third wheel is extended ahead with respect to the 
point A and, if 0 = 7t, the third wheel is extended to the rear with respect to the pointA; 

(2) co = ~ = 0, 00 ¢ 0 is an arbitrary quantity (4.11) 

The steady motion is a single parameter family of the equilibrium positions of the system; 

(3) ~ = O, T.e. m r l l b + m c l ( b - d  ) = 0 

00~0,  rt; o)~0, g2 = rsin0° co (4.12) 
b +/cos00 
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In this case, when conditions (4.12), which relate the parameters of the system, are satisfied, such a 
steady motion of the tricycle occurs for which the plane of the third wheel is rotated through an angle 
00 to the axis of symmetry of the trolley, the leading wheels rotate with an angular velocity c0/2, the axis 
of symmetry of the trolley swivels with a velocity fl and the projection of the centre of mass the trolley 
describes a circle in the horizontal plane. 

We will now introduce deviation from the arbitrary steady motion 

ql = O)+yl, 02 = ~ +y2, q3 = Oo +z (4.13) 

The linearized equations of motion of system (4.6), (4.3) in the neighbourhood of the steady motion 
(4.7) have the form 

• n T r ( 2 )  (2) A~ = Ply+Vlz+F(1)u(1)tr2 r u , ~ = P2y+V2z 

where 

(4.14) 

A = Jl all(O°)al2(O°)Jla21(O0) a22(00) ' F(I)= 11 l 0 I I ' 0  b72 F(2) = 1, P2 = lib31(00)b32(00)jJ 

We will now consider the question of the stability of the rectilinear steady motion of the tricycle (4.10) 
when there are no controls. 

In this case 

II I[ II°ll o P1 = 0 0 VI = lr2(o 2 , P2 = - (1  + 

F 
V 2 = ~(Df; (e  = COS00) 

It is assumed here that the leading wheels are identical (ml = m2, and then J4 = 0, S 2 = 0 )  
The characteristic equation of system (4.14) has a single zero root, which corresponds to the existence 

of a one-dimensional manifold of steady motions. The remaining roots are found from the equation 

50~. 2 + 51;~. + 52 = 0 (4.15) 

According to the theorem on the stability of the steady motions of non-holonomic mechanical systems 
of the class being considered, which was proved in section 2, the conditions for the stability of the 
rectilinear motion of the tricycle have the form (30 > 0) 

5, :  L,rL.- 

5 2 = - - E K > 0  

Hence, in order for the rectilinear motion to be stable, the parameters of the system must satisfy the 
conditions 

E[mrllb + mcl(b - d)] < 0 

¢0 mrll(El 1 - b ) + e  (m l +m2)a 2+I  c + l  1+12+~(J1  +J2) - 

(4.16) 
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The sign of 61 depends on the sign of o3, that is, the direction of the motion has a considerable 
effect on the stability of the given system, which is characteristic of non-holonomic mechanical systems 
[2, 3, 7, 12]. 

For a certain choice of the system parameters (61 = 0, 62 > 0), the characteristic equation of system 
(4.15) will have a pair of imaginary roots, which indicates the possibility of the existence of periodic 
motions of the system when the values of the parameters are close to the above-mentioned values [13]. 

The conditions for the stability of the rectilinear motion, in the case of simpler model which does 
not take account of the inertia of the wheels, obtained earlier in [7] are a consequence of conditions 
(4.16). 

We will now consider the question of the stability of the "rotational" motion (4.12) (case 3). For 
simplicity and clarity, we shall assume that 00 = n/2. 

The equations which have been linearized in the neighbourhood of this steady motion have the form 
of (4.14), where 

12 II 
F r 

PI = O)/r -~--fiV ~I 5 

bI6 -/6 

V2 l r  (16 v+b2g)  = o3b2 = 

P2 = II;' II , ,6 

The characteristic equation also has a single zero root and the remaining roots are found from 
Eqs (4,15). 

In this case 5 o > 0, 82 > 0 and the stability condition fil > 0 takes the form 

o3{a11(00)I6 b2 + a22(00)[vr 2 -al l (00)b 2] } > 0 (4.17) 

As in the case of rectilinear motion, the conditions for the stability of the motion being considered 
in the case of the simpler model follow from the conditions (4.17) for the steady motions (4.12) [7]. 

We will now investigate the question of the possibility in principle, of stabilizing the steady motion 
of the tricycle, which corresponds to an analysis of the controllability of the system. 

Generally speaking, the introduction of controls is possible for all the generalized coordinates 
ql, ..., q7- In wheeled robots, control, as a rule, is achieved by introducing control moments with respect 
to the angular variables %, q02, %, 0, which characterize the rotations of the wheels (%, q02, %) and the 
strut (0). These control moments correspond to the generalized control forces Qj (j = 1, 3, 6, 7). 

It is obvious that, when all the controls exist, the system is always controllable. 
Control with respect to the coordinate O is not considered (Q2 = 0), since, for its introduction, an 

additional external moment of the forces has to be applied to the tricycle. 
According to Theorem 2, the conditions of controllability have the form 

rankU = 3 

alibi - Pll 

U = -P2! 

-b31 

II 

a22~'i- P22 -VI2 0 0 b62 b72 I1' 
-b32 ~'i--V22 0 b32 0 0 

i = 1,2,3 

(4.18) 

where )~1 = 0 and )~2 and )~3 are found from Eq. (4.15). 

The controllability of  the system in the case of  rectilinear motion for different methods of introducing the 
controls. 
1. A control is introduced solely with respect to the coordinates q)l and q)2 (Q1 ¢ 0, Q7 :~ 0). It then 
follows from condition (4.18) that the system is controllable (b32b72 ¢ 0). 
2. A control is introduced solely with respect to the coordinate %. This control is formally equivalent 
to one of the versions of the introduction of a matched control with respect to the coordinates q01 and 
(P2: Q~I = Q~2 (Q1 = 2Q~1, Q6 = o, Q7 = 0). In these cases, the system is uncontrollable. 
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3. A control is introduced solely with respect to the coordinate 0 (Q3 # 0, Q1 = 0, Q6 = 0, Q7 = 0). 
This control is formally equivalent to another version of the introduction of a matched control with 
respect to the coordinates ~Pl and (P2: Q~I = ---Qcp2 (Q1 = 0, Q3 = 0, Q6 --- 0, Q7 = 2Q,1). In these cases, 
the system is also uncontrollable. 

Controllability of the system in the case of "rotational" motion. 
1. The system is controllable in this case when controls are introduced solely with respect to the 
coordinates ~Pl and (P2 (Q1 ~: 0, Q7 ¢: 0). If the control is matched: Q~I = Q~2 (Q1 = 2Q~1, Q6 = 0, 
Q7 = 0), the system is uncontrollable, as in the case of rectilinear motion. 
2. If a control is introduced solely with respect to the coordinate ~P3 (Q1 = 0, Q3 = 0, Q6 # 0, Q7 = 0), 
the system is controllable. 
3. If a control is introduced solely with respect to the coordinate 0, the system is controllable, unlike 
in the case of rectilinear motion. 

The above analysis of the controllability enables one to construct algorithms for stabilizing the steady 
motions of the tricycle considered using the minimum number of controlling actions. 
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